|
Größere Schriftzeichen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wir sind Potenzen bereits früher begegnet und haben gelegentlich Schreibweisen wie a−1 für 1/a und a1/2 für √a verwendet. In diesem Kapitel werden wir besprechen, was es damit auf sich hat. Zu Beginn sehen wir uns an, wo der Begriff der Potenz herkommt. Der Ursprung des Multiplizierens aus dem Geist der Addition Wir können die Zahl 5 drei mal "zu sich selbst addieren", d.h. wir können die Summe 5 + 5 + 5 bilden und schreiben sie als 3 × 5. Wir können das mit jeder (reellen) Zahl machen und verwenden dann abstrakte Symbole (Buchstaben): Steht a für eine Zahl, so ist mit 3 a (oder 3 × a) nichts anderes als a + a + a gemeint, und wenn wir uns auf die Zahl der Summanden nicht festlegen, schreiben wir n a, wobei n für eine beliebige natürliche Zahl (n = 1, 2, 3,...) steht. Auf diese Weise entsteht die Idee des Multiplizierens aus der Idee des Addierens. Um das Handhaben solcher Ausdrücke zu erleichtern, können wir eine Rechenregel (Identität) aufstellen:
In ihr steht a für eine beliebige reelle Zahl. m und n dürfen − zunächst − beliebige natürliche Zahlen (m, n = 1, 2, 3,...) sein. Wir können diese Idee der Multiplikation aber verallgemeinern, indem wir für m und n auch reelle Zahlen zulassen. Damit gelangen wir zur Multiplikation als Rechenoperation in der Menge der reelle Zahlen, einer für die Mathematik grundlegenden Struktur. Der Ursprung des Potenzierens aus dem Geist der Multiplikation Die Idee des "Potenzierens" besteht zunächst einfach darin, den gerade dargestellten Gedankengang für den Fall zu wiederholen, dass von der Multiplikation (statt, wie oben, von der Addition) ausgegangen wird: Wir können die Zahl 5 drei mal "mit sich selbst multiplizieren", d.h. das Produkt 5 × 5 × 5 bilden und schreiben es als 53. Wir können das mit jeder (reellen) Zahl machen und verwenden dann abstrakte Symbole (Buchstaben): Steht a für eine Zahl, so ist mit a3 nichts anderes als a × a × a gemeint, und wenn wir uns auf die Zahl der Faktoren nicht festlegen, schreiben wir an (ausgesprochen "a hoch n"), wobei n für eine beliebige natürliche Zahl (n = 1, 2, 3,...) steht. Auf diese Weise entsteht die Idee des Potenzierens aus der Idee des Multiplizierens. Wir nennen
| negative Hochzahlen und Hochzahl 1/2 reelle und natürliche Zahlen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Diese Schreibweise ist für uns nicht neu. Um das Handhaben solcher Ausdrücke zu erleichtern, können wir eine Rechenregel (Identität) aufstellen, die in der Folge von zentraler Bedeutung sein wird:
In ihr steht a für eine beliebige reelle Zahl. m und n dürfen − zunächst − beliebige natürliche Zahlen (m, n = 1, 2, 3,...) sein. Um sie zu beweisen, muss man eigentlich fast nichts tun, denn sie drückt einfach das Abzählen von Faktoren aus: So ist beispielsweise das Produkt von 53 (also 5 × 5 × 5) mit 54 (also 5 × 5 × 5 × 5) das 7-fache Produkt von 5 mit sich selbst, also 57, d.h. 53 + 4. Auf elegante Weise verbindet diese Regel das Produkt (von Potenzen) mit der Summe (der Hochzahlen). Trotz ihrer Einfachheit zieht sie − wie wir in diesem Kapitel noch sehen werden − zahlreiche interessante Konsequenzen nach sich. Um die numerischen Werte von Potenzen schnell berechnen zu können, stellen wir hier einen Potenz-Rechner zur Verfügung: Für zwei gegebene Zahlen a und m berechnet er am. Um 53 zu berechnen, geben Sie 5 in das erste und 3 in das zweite (hochgestellte) Textfeld ein und klicken auf das Gleichheitszeichen! (Jeder andere elektronische Rechner oder ein Taschenrechner kann das natürlich auch). | Potenzschreibweise | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wir sind aber noch nicht fertig!
|
reelle Exponenten komplexe Zahlen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Macht es einen Sinn, eine reelle Zahl a "−1 mal mit sich selbst zu multiplizieren"? Auf den ersten Blick mag das abwegig erscheinen. Aber andererseits könnte man auch die Idee der negativen Zahlen mit dem Argument ablehnen, "Zahlen" kämen vom "Zählen", und es gäbe keine negative Anzahl von Dingen − ein Argument, das mit dem schlichten Hinweis auf die "roten Zahlen" in einer Bilanz oder die "negativen Temperaturen" im Winter quittiert würde. Versuchen wir also, gegenüber der Einführung neuer mathematischer Strukturen nicht voreingenommen zu sein und betrachten die Regel (2): Wenn wir versuchsweise m = 1 und n = −1 setzen, erhalten wir die Aussage
sein! Wir können uns vorstellen, dass hier a "Null mal mit sich selbst multipliziert wird". Wenn also a0 irgendeinen Sinn macht, dann diesen! Lediglich über den Fall a = 0 ließe sich noch streiten. Wird (3) auch in diesem Fall ernst genommen, so gilt 00 = 1, so seltsam Ihnen das vielleicht erscheinen mag. Nun nehmen wir uns die Aussage
Schließlich schöpfen wir die Regel (2) noch ein weiteres Mal aus: Wir setzen n = −m, wobei m für eine beliebige natürliche Zahl stehen soll (n also negativ ist). Es ergibt sich
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
was ebenfalls nur für a ≠ 0
möglich ist.
Das ist das Hauptresultat dieses Abschnitts. Das zuvor erzielte Resultat (4)
ist ein Spezialfall davon (für m = 1).
Wenn wir nun − um ganz sicher zu gehen −
die Regel (2) noch einmal überprüfen (siehe den nebenstehenden Button),
finden wir, dass sie auch dann erfüllt ist, wenn für die
Exponenten m und n
beliebige ganze Zahlen zugelassen werden. Unser erster Versuch, den Bereich der zulässigen Exponenten
zu vergrößern, war erfolgreich und hat sich als konsistent erwiesen. Wir führen daher offiziell eine mathematische Neuerung ein und erheben (3) und (5) zu Definitionen:
Unser obiger Potenz-Rechner kennt diese Definitionen auch. Probieren Sie es selbst aus: Berechnen Sie mit seiner Hilfe 2−3 (aber überlegen Sie zuvor, was herauskommen sollte)! |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nach diesem Erfolg gehen wir kühn einen Schritt weiter und fragen: macht es Sinn, auch rationale Zahlen als Potenzen zuzulassen? Wir erinnern uns: Eine rationale Zahl ist eine reelle Zahl, die als Quotient zweier ganzer Zahlen geschrieben werden kann (eine Bruchzahl). Macht es etwa einen Sinn, eine reelle Zahl a "1/2 mal mit sich selbst zu multiplizieren"? Wir wenden unsere bewährte Methode an, die Rechenregel (2) auszubeuten. Diesmal ist die für unsere Zwecke günstigste Wahl
Als nächstes wird versucht, a1/3 einen Sinn zu geben. Dazu bemerken wir zunächst, dass aus (2) eine allgemeinere Regel folgt: Nach Multiplikation beider Seiten von (2) mit ak, wobei k eine natürliche Zahl ist, und einer weiteren Anwendung von (2) wird
Wenn wir nun Indem (7) in analoger Weise zu
mit einer beliebigen Anzahl von Exponenten verallgemeinert wird, können wir unsere Argumentation auf beliebige Kehrwerte natürlicher Zahlen ausdehnen: Für jede natürliche Zahl q betrachten wir die Variante von (8) mit q Exponenten und setzen alle Exponenten gleich 1/q. Wir erhalten die Aussage
| rationale Zahlen das Symbol ≡ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nun gehen wir noch den letzten Schritt, um beliebige rationale Zahlen als Exponenten zuzulassen.
Wir behandelt zunächst den Fall positiver rationaler Zahlen
(d.h. Zahlen, die sich als Quotienten
p/q
zweier natürlicher Zahlen schreiben lassen), betrachten die Variante von (8)
mit p Exponenten und setzen alle diese
Exponenten gleich 1/q. Es resultiert die Aussage
gelangen. Wenn wir zuletzt verlangen, dass die Beziehung (5) auch für rationale m gelten soll, so ergibt sich der verbleibende Fall, dass der Exponent eine negative rationale Zahl ist:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
wobei der Nenner durch (10) gegeben ist. Damit haben wir unser
Ziel erreicht.
Ein abschließender Check (siehe den nebenstehenden Button) zeigt,
dass die Rechenregeln (2) und (5) auch für
rationale Exponenten erfüllt sind. Wir führen also unsere zweite Neuerung ein und erheben (9)−(11) zu Definitionen:
Unser obiger Potenz-Rechner kennt diese Definitionen auch. Probieren Sie es selbst aus: Berechnen Sie mit seiner Hilfe 93/2 (aber überlegen Sie zuvor, was herauskommen sollte)! Der Exponent kann als 3/2 oder als 1.5 eingegeben werden. Es ist nicht schwer, einige weitere Regeln abzuleiten, die für das konkrete Rechnen praktisch sind. Wir erwähnen (ohne Beweis)
sowie vier Identitäten, die Potenzen mit verschiedenen Basen zueinander in Beziehung setzen:
In (12)−(17) stehen m und n für beliebige rationale Zahlen. Beispielsweise besagt (14) für m = 1/2, dass die Quadratwurzel aus 1/a gleich dem Kehrwert der Quadratwurzel aus a ist. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Der logisch nächste Schritt, den Bereich der zulässigen Exponenten einer Potenz auf alle reellen Zahlen auszudehnen, ist einem späteren Kapitel vorbehalten. |
reelle Exponenten | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Da Potenzen in zahlreichen Zusammenhängen auftreten, ist es nützlich, mit ihnen sicher umgehen zu können. Vereinfachte Schreibweise Unser neuer Potenzbegriff hat zunächst eine praktische Konsequenz: Er wird häufig dazu benutzt, beim Anschreiben von Termen Wurzelzeichen und Bruchstriche zu vermeiden. So lässt sich beispielsweise der Bruchterm
Umformen von Termen Die Erkenntnisse, die wir in diesem Kapitel gewonnen haben, deuten darauf hin, dass Dinge, die scheinbar so verschieden sind wie das Quadrieren, das Bilden des Kehrwerts und das Wurzelziehen auf einer fundamentaleren Ebene etwas gemeinsam haben. Die bloße Verwendung der Potenzschreibweise erlaubt es, diese Operationen unter einem einheitlichen Gesichtspunkt zu betrachen: als das Bilden von Potenzen. Sehen wir uns ein Beispiel an: Können Sie den Term
angeschrieben, so braucht lediglich zwei mal die Rechenregel (12) − von rechts nach links gelesen − angewandt werden, um ihn zu
zu vereinfachen. Er kann nun wieder als Bruchterm umgeschrieben werden, und auch eine Schreibweise, die die Potenz 3/2 wieder eliminiert, ist möglich (ganz allgemein gilt Da es im Zuge vieler mathematischer Anwendungen notwendig ist, Terme umzuformen und zu vereinfachen, macht es sich bezahlt, wenn Techniken dieser Art gut beherrscht werden. Sie sind keine Hexerei, sondern beruhen auf den elementaren Rechengesetzen der Addition und Multiplikation und auf dem in den beiden vorhergehenden Abschnitten entwickelten verallgemeinerten Potenzbegriff. Für viele Fälle reichen die beiden folgenden Prinzipien aus:
Mit ihrer Hilfe kann das Vereinfachen von Termen mit Potenzen in gewissem Umfang "automatisiert" werden, ähnlich wie das Multiplizieren von Zahlen. Nach einiger Übung sollten Sie in der Lage sein, einem gegebenen Term schnell anzusehen, welche Umformungen möglich (und sinnvoll) sind und wie sie durchgeführt werden. Zahlreiche Übungsmöglichkeiten finden sie in der Aufgabensammlung Rechnen mit Potenzen, die die Universität Bayreuth im Rahmen des Projekts SMART zur Verfügung stellt. Insbesondere die Abschnitte "Termumformungen" → "Exponenten ganzzahlig" und "Termumformungen" → "Exponenten rational oder reell" entsprechen dem hier gebrachten Stoff. Die umzuformenden Terme sind zum Teil recht kompliziert, aber in allen Fällen sind die Lösungen angegeben. Unter den anderen Abschnitten finden Sie Übungsmöglichkeiten, die im weiteren Sinn zum Thema gehören. Nenner rational machen Obwohl (21) eine übersichtliche Form ist, einen Term anzuschreiben, ist es nicht immer sinnvoll, Produkte und Quotienten von Potenzen gleicher Basis auf eine einzige Potenz zu reduzieren. Das gilt insbesondere dann, wenn mit solchen Termen weitergerechnet werden soll. Stellen wir uns vor, aus irgendeinem Grund sei es nötig, die Rechnung
In der Potenzschreibweise lautet (22): Oft ist es sinnvoll, Brüche, die Quadratwurzeln im Nenner enthalten, auf diese Weise zu behandeln. Der Schlüssel dafür ist die Identität
Potenzen und die Ordnung der reellen Zahlen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intuitiv sind wir gewöhnt, dass das Potenzieren Zahlen, die größer als 1 sind, vergrößert.
Beispiel:
Hilfreich ist es auch, bei derartigen Fragen die Rechenregeln für Potenzen einzusetzen:
Werden Potenzen mit gleichen Exponenten, aber mit verschiedenen Basen verglichen, so kann man sich an die folgenden Regeln (die sich übrigens auch aus den obigen ableiten lassen) halten: Für 0 < a < b gilt: Ist m > 0, so folgt am < bm; ist m < 0, so folgt am > bm. Der Computer hilft Alle wissenschaftlichen Taschenrechner und viele Rechenprogramme am Computer können Potenzen berechnen, als deren Exponenten beliebige Dezimalzahlen eingegeben werden können.
|
Ordnung der reellen Zahlen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In diesem letzten Abschnitt fassen wir die Definitionen, die die Bedeutung von Potenzen mit rationalen Exponenten festlegen, zusammen und geben ein paar Ausblicke auf die Themen späterer Kapitel. Zusammenfassung Im zweiten und dritten Abschnitt dieses Kapitels wurden Potenzen ax für den Fall definiert, dass der Exponent x eine beliebige rationale Zahl ist (d.h. eine reelle Zahl, die als Quotient zweier ganzer Zahlen geschrieben werden kann). Zusammengefasst lauten unsere Definitionen:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dabei steht a für eine reelle Zahl (die Basis):
Ausblicke Wir haben Potenzen bereits früher kennengelernt, haben diesen Begriff hier exakt gefasst und stark verallgemeinert und werden ihn und die mit ihm verbundenen Strukturen in späteren Kapiteln noch weiterentwickeln und genauer analysieren:
|
Graphen einfacher Potenzfunktionen Exponentialfunktion und Logarithmus Funktionen 2 Komplexe Zahlen |
|
|
||||
|
|
Zum Seitenanfang Zum Lexikon Zur Galerie Zum Inhaltsverzeichnis der Mathematischen Hintergründe Zu den interaktiven Tests Zu den Mathe-Links und Online-Werkzeugen Zur Welcome Page |